Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell Rep ; 37(7): 109997, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788630

RESUMEN

The anorexigenic effect of serotonergic compounds has largely been attributed to activation of serotonin 2C receptors (Htr2cs). Using mouse genetic models in which Htr2c can be selectively deleted or restored (in Htr2c-null mice), we investigate the role of Htr2c in forebrain Sim1 neurons. Unexpectedly, we find that Htr2c acts in these neurons to promote food intake and counteract the anorectic effect of serotonergic appetite suppressants. Furthermore, Htr2c marks a subset of Sim1 neurons in the paraventricular nucleus of the hypothalamus (PVH). Chemogenetic activation of these neurons in adult mice suppresses hunger, whereas their silencing promotes feeding. In support of an orexigenic role of PVH Htr2c, whole-cell patch-clamp experiments demonstrate that activation of Htr2c inhibits PVH neurons. Intriguingly, this inhibition is due to Gαi/o-dependent activation of ATP-sensitive K+ conductance, a mechanism of action not identified previously in the mammalian nervous system.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo , Receptor de Serotonina 5-HT2C/metabolismo , Animales , Anorexia , Depresores del Apetito/metabolismo , Depresores del Apetito/farmacología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Hambre/fisiología , Hipotálamo/metabolismo , Hipotálamo/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Neuronas/fisiología , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/fisiología , Potasio/metabolismo , Receptor de Serotonina 5-HT2C/genética , Serotonina/metabolismo , Serotonina/farmacología , Serotoninérgicos
2.
J Exp Med ; 218(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33978701

RESUMEN

Atypical antipsychotics such as risperidone cause drug-induced metabolic syndrome. However, the underlying mechanisms remain largely unknown. Here, we report a new mouse model that reliably reproduces risperidone-induced weight gain, adiposity, and glucose intolerance. We found that risperidone treatment acutely altered energy balance in C57BL/6 mice and that hyperphagia accounted for most of the weight gain. Transcriptomic analyses in the hypothalamus of risperidone-fed mice revealed that risperidone treatment reduced the expression of Mc4r. Furthermore, Mc4r in Sim1 neurons was necessary for risperidone-induced hyperphagia and weight gain. Moreover, we found that the same pathway underlies the obesogenic effect of olanzapine-another commonly prescribed antipsychotic drug. Remarkably, whole-cell patch-clamp recording demonstrated that risperidone acutely inhibited the activity of hypothalamic Mc4r neurons via the opening of a postsynaptic potassium conductance. Finally, we showed that treatment with setmelanotide, an MC4R-specific agonist, mitigated hyperphagia and obesity in both risperidone- and olanzapine-fed mice.


Asunto(s)
Antipsicóticos/farmacología , Receptor de Melanocortina Tipo 4/metabolismo , Risperidona/farmacología , Aumento de Peso/efectos de los fármacos , Animales , Femenino , Hiperfagia/metabolismo , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/metabolismo , Olanzapina/farmacología , Potasio/metabolismo , Potenciales Sinápticos/efectos de los fármacos , Transcriptoma/efectos de los fármacos , alfa-MSH/análogos & derivados , alfa-MSH/farmacología
3.
Exp Mol Med ; 53(4): 505-516, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33837263

RESUMEN

Body homeostasis is predominantly controlled by hormones secreted by endocrine organs. The central nervous system contains several important endocrine structures, including the hypothalamic-pituitary axis. Conventionally, neurohormones released by the hypothalamus and the pituitary gland (hypophysis) have received much attention owing to the unique functions of the end hormones released by their target peripheral organs (e.g., glucocorticoids released by the adrenal glands). Recent advances in mouse genetics have revealed several important metabolic functions of hypothalamic neurohormone-expressing cells, many of which are not readily explained by the action of the corresponding classical downstream hormones. Notably, the newly identified functions are better explained by the action of conventional neurotransmitters (e.g., glutamate and GABA) that constitute a neuronal circuit. In this review, we discuss the regulation of appetite and metabolism by hypothalamic neurohormone-expressing cells, with a focus on the distinct contributions of neurohormones and neurotransmitters released by these neurons.


Asunto(s)
Apetito/fisiología , Metabolismo Energético , Sistemas Neurosecretores/fisiología , Animales , Homeostasis , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipotálamo/metabolismo , Células Neuroendocrinas/inmunología , Células Neuroendocrinas/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Glándula Tiroides/metabolismo
4.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810547

RESUMEN

The hypothalamic regulation of appetite governs whole-body energy balance. Satiety is regulated by endocrine factors including leptin, and impaired leptin signaling is associated with obesity. Despite the anorectic effect of leptin through the regulation of the hypothalamic feeding circuit, a distinct downstream mediator of leptin signaling in neuron remains unclear. Angiopoietin-like growth factor (AGF) is a peripheral activator of energy expenditure and antagonizes obesity. However, the regulation of AGF expression in brain and localization to mediate anorectic signaling is unknown. Here, we demonstrated that AGF is expressed in proopiomelanocortin (POMC)-expressing neurons located in the arcuate nucleus (ARC) of the hypothalamus. Unlike other brain regions, hypothalamic AGF expression is stimulated by leptin-induced signal transducers and activators of transcription 3 (STAT3) phosphorylation. In addition, leptin treatment to hypothalamic N1 cells significantly enhanced the promoter activity of AGF. This induction was abolished by the pretreatment of ruxolitinib, a leptin signaling inhibitor. These results indicate that hypothalamic AGF expression is induced by leptin and colocalized to POMC neurons.


Asunto(s)
Proteínas Similares a la Angiopoyetina/genética , Proteínas Similares a la Angiopoyetina/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Transducción de Señal , Proteína 6 similar a la Angiopoyetina , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Encéfalo/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Fosforilación , Proopiomelanocortina/metabolismo , Factor de Transcripción STAT3/metabolismo
5.
Nat Commun ; 11(1): 5772, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33188191

RESUMEN

Hypothalamic neurons including proopiomelanocortin (POMC)-producing neurons regulate body weights. The non-motile primary cilium is a critical sensory organelle on the cell surface. An association between ciliary defects and obesity has been suggested, but the underlying mechanisms are not fully understood. Here we show that inhibition of ciliogenesis in POMC-expressing developing hypothalamic neurons, by depleting ciliogenic genes IFT88 and KIF3A, leads to adulthood obesity in mice. In contrast, adult-onset ciliary dysgenesis in POMC neurons causes no significant change in adiposity. In developing POMC neurons, abnormal cilia formation disrupts axonal projections through impaired lysosomal protein degradation. Notably, maternal nutrition and postnatal leptin surge have a profound impact on ciliogenesis in the hypothalamus of neonatal mice; through these effects they critically modulate the organization of hypothalamic feeding circuits. Our findings reveal a mechanism of early life programming of adult adiposity, which is mediated by primary cilia in developing hypothalamic neurons.


Asunto(s)
Adiposidad , Cilios/metabolismo , Hipotálamo/embriología , Hipotálamo/metabolismo , Lisosomas/metabolismo , Animales , Animales Recién Nacidos , Núcleo Arqueado del Hipotálamo/metabolismo , Axones/metabolismo , Metabolismo Energético , Femenino , Glucosa/metabolismo , Leptina/metabolismo , Desnutrición/patología , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Neurogénesis , Obesidad/metabolismo , Obesidad/patología , Organogénesis , Proopiomelanocortina/metabolismo , Proteolisis
6.
Neurosci Lett ; 712: 134356, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31470043

RESUMEN

Parasympathetic nervous system (PNS) innervates with several peripheral organs such as liver, pancreas and regulates energy metabolism. However, the direct role of PNS on food intake has been poorly understood. In the present study, we investigated the role of parasympathetic nervous system in regulation of feeding by chemogenetic methods. Adeno associated virus carrying DREADD (designer receptors exclusively activated by designer drugs) infused into the target brain region by stereotaxic surgery. The stimulatory hM3Dq or inhibitory hM4Di DREADD was over-expressed in selective population of dorsal motor nucleus of the vagus (DMV) neurons by Cre-recombinase-dependent manners. Activation of parasympathetic neuron by intraperitoneal injection of the M3-muscarinic receptor ligand clozapine-N-oxide (CNO) (1 mg/kg) suppressed food intake and resulted in body weight loss in ChAT-Cre mice. Parasympathetic neurons activation resulted in improved glucose tolerance while inhibition of the neurons resulted in impaired glucose tolerance. Stimulation of parasympathetic nervous system by injection of CNO (1 mg/kg) increased oxygen consumption and energy expenditure. Within the hypothalamus, in the arcuate nucleus (ARC) changed AGRP/POMC neurons. These results suggest that direct activation of parasympathetic nervous system decreases food intake and body weight with improved glucose tolerance.


Asunto(s)
Ingestión de Alimentos/fisiología , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Sistema Nervioso Parasimpático/fisiología , Nervio Vago/fisiología , Animales , Peso Corporal/efectos de los fármacos , Peso Corporal/fisiología , Clozapina/análogos & derivados , Clozapina/farmacología , Dependovirus , Ingestión de Alimentos/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Sistema Nervioso Parasimpático/efectos de los fármacos , Nervio Vago/efectos de los fármacos
7.
Cell Rep ; 25(4): 934-946.e5, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30355499

RESUMEN

Obesity-associated metabolic alterations are closely linked to low-grade inflammation in peripheral organs, in which macrophages play a central role. Using genetic labeling of myeloid lineage cells, we show that hypothalamic macrophages normally reside in the perivascular area and circumventricular organ median eminence. Chronic consumption of a high-fat diet (HFD) induces expansion of the monocyte-derived macrophage pool in the hypothalamic arcuate nucleus (ARC), which is significantly attributed to enhanced proliferation of macrophages. Notably, inducible nitric oxide synthase (iNOS) is robustly activated in ARC macrophages of HFD-fed obese mice. Hypothalamic macrophage iNOS inhibition completely abrogates macrophage accumulation and activation, proinflammatory cytokine overproduction, reactive astrogliosis, blood-brain-barrier permeability, and lipid accumulation in the ARC of obese mice. Moreover, central iNOS inhibition improves obesity-induced alterations in systemic glucose metabolism without affecting adiposity. Our findings suggest a critical role for hypothalamic macrophage-expressed iNOS in hypothalamic inflammation and abnormal glucose metabolism in cases of overnutrition-induced obesity.


Asunto(s)
Hipotálamo/patología , Inflamación/enzimología , Macrófagos/enzimología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Obesidad/enzimología , Animales , Núcleo Arqueado del Hipotálamo/patología , Barrera Hematoencefálica/patología , Proliferación Celular , Dieta Alta en Grasa , Glucosa/metabolismo , Inflamación/patología , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Obesidad/patología , Células RAW 264.7
8.
BMB Rep ; 48(4): 229-33, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25560696

RESUMEN

The central nervous system (CNS) controls food intake and energy expenditure via tight coordinations between multiple neuronal populations. Specifically, two distinct neuronal populations exist in the arcuate nucleus of hypothalamus (ARH): the anorexigenic (appetite-suppressing) pro-opiomelanocortin (POMC) neurons and the orexigenic (appetite-increasing) neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons. The coordinated regulation of neuronal circuit involving these neurons is essential in properly maintaining energy balance, and any disturbance therein may result in hyperphagia/obesity or hypophagia/starvation. Thus, adequate knowledge of the POMC and NPY/AgRP neuron physiology is mandatory to understand the pathophysiology of obesity and related metabolic diseases. This review will discuss the history and recent updates on the POMC and NPY/AgRP neuronal circuits, as well as the general anorexigenic and orexigenic circuits in the CNS.


Asunto(s)
Apetito/fisiología , Hipotálamo/fisiología , Neuronas/fisiología , Proteína Relacionada con Agouti/metabolismo , Animales , Núcleo Arqueado del Hipotálamo/fisiología , Sistema Nervioso Central/fisiología , Humanos , Melanocortinas/fisiología , Ratones , Neuronas/metabolismo , Neuropéptido Y/metabolismo , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/fisiología , Proopiomelanocortina/metabolismo
9.
J Neurosci ; 31(37): 13147-56, 2011 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-21917798

RESUMEN

Evidence suggests that the role played by the adipocyte-derived hormone leptin in female reproductive physiology is mediated in part by neurons located within the ventral premammillary nucleus (PMV). Leptin activates PMV neurons; however, the intracellular signaling pathway and channel(s) involved remain undefined. Notably, leptin's excitatory and inhibitory effects within hypothalamic and brainstem nuclei share the intracellular signaling cascade phosphoinositide 3 kinase (PI3K). Therefore, we assessed whether PI3K signaling is required for the acute effect of leptin to alter cellular activity of PMV neurons that express leptin receptors (LepR PMV neurons). Leptin caused a rapid depolarization in the majority of LepR PMV neurons in patch-clamp recordings of hypothalamic slices, while a subset of LepR PMV neurons were hyperpolarized in response to leptin. Data were obtained from both male and female mice and results demonstrate that the acute effect of leptin on LepR PMV neurons was identical for both sexes. Pharmacological inhibition of PI3K prevented the acute leptin-induced change in neuronal activity of LepR PMV neurons, indicating a PI3K-dependent mechanism of leptin action. Similarly, mice with genetically disrupted PI3K signaling in LepR PMV neurons failed to alter cellular activity in response to leptin. Moreover, the leptin-induced depolarization was dependent on a putative TRPC channel. In contrast, the leptin-induced-hyperpolarization required the activation of a putative Katp channel. Collectively, these results suggest that PI3K signaling in LepR PMV neurons is essential for leptin-induced alteration in cellular activity, and these data may suggest a cellular correlate in which leptin contributes to the initiation of reproductive development.


Asunto(s)
Hipotálamo/fisiología , Leptina/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Transducción de Señal/fisiología , Androstadienos/farmacología , Animales , Compuestos de Boro/farmacología , Cromonas/farmacología , Femenino , Genes Reporteros/genética , Hipotálamo/efectos de los fármacos , Hipotálamo/enzimología , Imidazoles/farmacología , Canales KATP/fisiología , Leptina/administración & dosificación , Leptina/farmacología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Morfolinas/farmacología , Neuronas/fisiología , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/biosíntesis , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Subunidades de Proteína/biosíntesis , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/fisiología , Wortmanina
10.
Nat Neurosci ; 13(12): 1457-9, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21037584

RESUMEN

Mice lacking 5-HT 2C receptors (5-HT(2C)Rs) displayed hepatic insulin resistance, a phenotype normalized by re-expression of 5-HT(2C)Rs only in pro-opiomelanocortin (POMC) neurons. 5-HT(2C)R deficiency also abolished the anti-diabetic effects of meta-chlorophenylpiperazine (a 5-HT(2C)R agonist); these effects were restored when 5-HT(2C)Rs were re-expressed in POMC neurons. Our findings indicate that 5-HT(2C)Rs expressed by POMC neurons are physiologically relevant regulators of insulin sensitivity and glucose homeostasis in the liver.


Asunto(s)
Regulación de la Expresión Génica , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Neuronas/metabolismo , Proopiomelanocortina/biosíntesis , Receptor de Serotonina 5-HT2C/biosíntesis , Animales , Tronco Encefálico/metabolismo , Glucosa/metabolismo , Homeostasis/fisiología , Hipotálamo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/fisiología , Proopiomelanocortina/fisiología , Receptor de Serotonina 5-HT2C/genética , Receptor de Serotonina 5-HT2C/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA